REF 918128

Test 1-28 07.21

NANOCOLOR® iron LR

Method:

Photometric determination of iron content by the triazine method.

Rectangular cuvette Measuring range (mg/L Fe)	50 mm 0.005–0.500	10 mm 0.05–5.00
Measuring wavelength (HW = 5-12 nm)	563 nm / 540 nm	
Reaction time	3 min (180 s)	5 min (300 s)
Reaction temperature	20-25 °C	

Contents of reagent set

300 mL iron LR R1

20 g iron LR R2

1 measuring spoon 70 mm

Preliminary tests:

If there is uncertainty regarding the level of the concentration in the sample to be tested, a preliminary test with QUANTOFIX® Total Iron 100 (2–100 mg/L Fe, REF 91344) rapidly provides this information. This allows the dilution required for the determination to be calculated and prepared directly.

Interferences:

To test for the absence of interfering complexing agents we recommend a preliminary test with NANOCOLOR® organic complexing agent 10 (REF 985052).

The following will not interfere: ≤ 0.5 mg/L Co^{2+} ; ≤ 5 mg/L Al^{3+} , Mn^{2+} , MoO_4^{2-} ; ≤ 10 mg/L Cu^{2+*} , Hg^{2+} , Nl^{2+} , Pb^{2+} , CN^{-} ; ≤ 50 mg/L $Cr_2O_7^{2-}$, NO_2^{-} ; ≤ 500 mg/L Ca^{2+} , Zn^{2+} ; ≤ 750 mg/L PO_4^{2-} ; ≤ 1000 mg/L Cd^{2+} , Mg^{2+} , NH_4^{++} , SiO_3^{2-} ; < 1 % nonionic surfactants, cationic surfactants; ≤ 1 % anionic surfactants; ≤ 5 % sodium acetate; ≤ 20 % $NaNO_3$.

* add 500 mg thiourea per 20 mL sample

The method is also suitable for the analysis of seawater. A prolonged reaction time of 5 min may be necessary.

roceaure:

Required accessories: Volumetric flask 25 mL (REF 91661), 10 mm and 50 mm rectangular cuvettes (REF 91933 and 91935), piston pipettes with tips

Sample	Blanc value [1]
In a 25-mL volumetric flask:	In a 25-mL volumetric flask, place:
Place 20 mL sample solution (the pH of the sample	20 mL distilled water,
must be between $pH = 1$ and $pH = 7$),	add 3 mL R1, mix,
add 3 mL R1, mix,	add 1 measuring spoon of R2
add 1 measuring spoon of R2	

Fill up sample and blank value with distilled water to 25 mL and mix. After 3 min^[2] pour into the cuvettes, clean the outside of the cuvettes and measure.

Determination of iron(II) ions:

Procedure as described above, but without reagent ion R2.

Measurement:

For MACHEREY-NAGEL photometers see manual, test 1-28. Photometers of other manufacturers: Check the factor for each type of device by measuring standard solutions.

Analytical quality assurance:

NANOCONTROL Multistandard Metals 1 (REF 925015) or Multistandard Drinking Water (REF 925018)

Reduced analytical procedures:

To increase the number of determinations, 10 mL can be prepared in volumetric flasks: 8 mL sample solution + 1.2 mL R1 + 1 measuring spoon of R2. The evaluation is then performed in a semi-micro cuvette (REF 91950).

Disposal:

Information regarding disposal can be found in the safety data sheet. You can download the SDS from www.mn-net.com/SDS.

MACHEREY-NAGEL GmbH & Co. KG · Valencienner Str. 11 · 52355 Düren · Germany

Tel.: +49 24 21 969-0 · info@mn-net.com · www.mn-net.com
PD 14122 / A063619 / 918128 / 0710.3

^[1] In the iron determination in the 10-mm cuvette, the sample solution can also be used without addition of reagent as a blank value.

^[2] For the iron determination in the 10-mm cuvette a reaction time of 5 min is recommended.